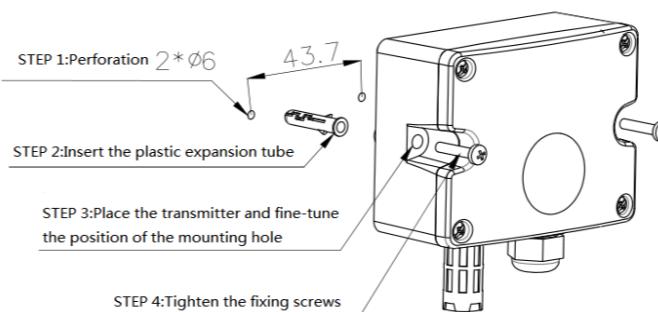


PRODUCT DESCRIPTION

LEFOO®
LFG101
CARBON MONOXIDE TRANSMITTER
 PRODUCT OPERATION MANUAL

OVERVIEW


The transmitter uses electrochemical principle to detect carbon monoxide in the air and has good selectivity and stability. Current, voltage, RS485 output mode available, wide voltage power supply and power anti-reverse connection protection. Suitable for indoor air quality detection, air conditioning, air purifier, underground parking lot and other occasions of carbon monoxide monitoring.

TECHNICAL PARAMETER

Output Mode	See logo
Measure concentration	See logo
Accuracy	$\pm 5\%Fs@25^\circ C$
Minimum reading	0.1 ppm / 1ppm
Working temperature	-10~50°C
Working humidity	15~90%RH (No condensation)
Working pressure	1atm $\pm 10\%$
Storage temperature	10~30°C
Working Voltage	10-30VDC (0-10V output requires 16-30VDC power supply)

01

INSTALLATION NOTES

WIRING INSTRUCTIONS

Power	Red	Positive
	Black	Negative
RS485	Green	485-A
	White	485-B

RS485 Output

Power	Red	Positive
	Black	Negative
Output	Green	Current/voltage output +
	White	Current/voltage output -

Analog Output

1.PROTOCOL (RS485)

Communication default baud rate:9600, Data bits:8, Stop bits:1, Parity:None, Flow control:None

(1)03 Example of reading data:The following are read address 01 data and return data respectively

Address	Function code	Starting Address	No. of Registers	CRC16
01	03	00 02	00 01	25 CA

Address	Function code	Data bytes	Data high	Data low	CRC16
01	03	02	09	C4 B8 50	

Description: The output concentration value = 0x09*256+0xC4=2304+196=2500...250.0ppm

(2)06 Example of writing data:The following are respectively writing 01 and returning data to the unknown address

Address	Function code	Starting Address	Data	CRC16
00	06	00 05	00 01 59 DA	

Address	Function code	Starting Address	Data	CRC16
01	06	00 05	00 01 58 0B	

Description: 0x00 is the broadcast address, the above is to modify the unknown address sensor address to 0x01

03

SELECTION INSTRUCTIONS

(3)Register description

Register address	Content	Operating	Range	Remarks
0002	CO concentration	R	0~1000	0-500ppm : reading value/10
0004	Baud rate	R&W	0~4	1=2400,2=4800, 0/3=9600 (default 0), 4=19200
0005	Slave ID address	R&W	0~255	Default: 0x01 0x00 is to set broadcast receiving address.

2.ANALOG OUTPUT

For example 1, if the range is 500ppm, the output type is 0~10V, when the output is 5V, the output concentration = $5V/10V \times 500.0\text{ppm} = 250.0\text{ppm}$

For example 2, if the range is 500ppm, 4~20mA output, and the output is 12mA, then the output concentration= $((12\text{mA}-4\text{mA})/16\text{mA}) \times 500.0\text{ppm} = 250.0\text{ppm}$

3.TRANSMITTER CALIBRATION

After the transmitter has been running for a long time, the zero point may drift. You can calibrate it as follows (outdoor fresh air is generally 0ppm, which can be used as a reference): Method: Press and hold the button inside the transmitter for more than 7 seconds (away from its breathing), release it when the light flashes.

Note: Before zero calibration, the transmitter should work continuously for more than 20 minutes in a 0ppm environment, and the return value is 0ppm after calibration.

CODE AND DESCRIPTION		Remark
LFG101-	Carbon monoxide transmitter	Model NO.
1	500ppm	Range
2	1000ppm	
V0	0~5V	Output
V10	0~10V	
A4	4~20mA	
RS	RS485/Modbus	
LFG101- 1 A4		

04 05

PRECAUTIONS

- Recommended for underground garages, kitchens and other places where carbon monoxide gas is generated;
- Keep the transmitter away from heat sources and avoid direct sunlight;
- Please confirm before use: whether the output voltage of the power supply is correct; Positive and negative wiring methods; product output wiring methods;
- Long-term use in an over-range and high-concentration gas environment can cause damage to the sensor;
- The air inlet of the sensor must not be blocked or contaminated. Special attention should be paid to protection in high-pollution environments such as during decoration.

06